What is the sum of all digits which appear in all the integers

What is the sum of all digits which appear in all the integers from 10 to 100

  1. 855
  2.  856
  3.  910
  4.  911

To find the sum of all digits that appear in the integers from 10 to 100, we can analyze the pattern and calculate accordingly.

1112131415161718191
2122232425262728292
3132333435363738393
4142434445464748494
5152535455565758595
6162636465666768696
7172737475767778797
8182838485868788898
9192939495969798999
10203040506008090100
Sum Of Digits: 461*9=9
1+2+3+..+9=45
(2+0)=2
total 56
2*9=18
1+2+3+..+9=45
(3+0)=3
total 66
3*9=18
1+2+3+..+9=45
(4+0)=4
total 76
4*9=18
1+2+3+..+9=45
(5+0)=5
total 86
5*9=18
1+2+3+..+9=45
(6+0)=6
total 96
6*9=18
1+2+3+..+9=45
(7+0)=7
total 106
7*9=18
1+2+3+..+9=45
(8+0)=8
total 116
8*9=18
1+2+3+..+9=45
(9+0)=9
total 126
9*9=18
1+2+3+..+9=45
(1+0+0)=1
total 127
Total Sum:901
Total sum of all digits From 10 To 100: 856
Exclude The Sum From 1 to 9

Therefore, the correct answer is 856.

Leave a Reply

Your email address will not be published. Required fields are marked *